LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER - JULY 2025

UMT 5501 - REAL ANALYSIS - II

Date: 11-07-2025	Dept. No.	Max. : 100 Marks
Time: 10:00 AM - 01:00 PM		

	SECTION A - K1 (CO1)					
	Answer ALL the Questions $(10 \times 1 = 10)$					
1.	Answer the following					
a)	Define limit of a function.					
b)	Give an example of a continuous function.					
c)	Define differentiability of a function.					
d)	State a property of Riemann integration.					
e)	Define compact set in \mathbb{R} .					
2.	Fill in the blanks					
a)	The cluster point of the set $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ is					
b)	$\lim_{x\to 2} \left(\frac{x^3-7x}{4x^2-5x}\right) = \dots$					
c)	If f is continuous on a closed interval $I = [a, b]$, and that f has a derivative in (a, b) , then there exists					
	at least one point $c \in (a, b)$ such that $f'(c) = \dots$					
d)	The norm of the partition (0, 1, 2, 4) of the interval [0, 4] is					
e)	An arbitrary intersection of closed sets in \mathbb{R} is in \mathbb{R} .					
SECTION A - K2 (CO1)						
	Answer ALL the Questions $(10 \times 1 = 10)$					
3.	Choose the correct answer for the following					
a)	$\lim_{x \to 0} \frac{\sin x}{x}$ is					
	i) 0 ii) 1 iii) π iv) ∞					
b)	Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$. If there exists a constant $K > 0$ such that $ f(x) - f(u) $					
	$\leq K x - u $, for all $x, u \in A$, then f is said to be a function on A .					
	i) Lipschitz ii) uniformly continuous iii) continuous iv) differentiable					
c)	The function $f: [-2, 2] \to \mathbb{R}$ defined by $f(x) = x $ is					
	i) continuous at 0 ii) not differentiable at 0					
d)	iii) uniformly continuous on [-2, 2] iv) all the above A constant function defined on an interval [a, b] is					
u)	i) Riemann integrable ii) Continuous iii) differentiable iv) all the above					
e)	The set $G = \{x \in \mathbb{R}: 0 < x < 1\}$ is					
	i) an empty set ii) an open set iii) a closed set iv) neither an open nor a closed set					
4.	State True or False					
a)	$\lim_{x \to 0} \frac{1}{x} $ exists in \mathbb{R} .					
b)	The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is continuous at every point of \mathbb{R} .					
c)	A function differentiable at a point is continuous at the point.					
d)	If $f \in \mathcal{R}[a, b]$ and if $[c, d] \subseteq [a, b]$, then the restriction of f to $[c, d]$ is in $\mathcal{R}[c, d]$.					
e)	Every closed subset of \mathbb{R} is open in \mathbb{R} .					

	SECTION B - K3 (CO2)					
	Answer any TWO of the following	$(2 \times 10 = 20)$				
5.	State and prove the sequential criterion for limits.					
6.	State and prove uniform continuity theorem.					
7.	Prove that if $f \in \mathcal{R}[a, b]$ then f is bounded on $[a, b]$.					
8.	State and prove the preservation of compactness theorem.					
	SECTION C – K4 (CO3)					
	Answer any TWO of the following	$(2 \times 10 = 20)$				
9.	If $f: A \to \mathbb{R}$ and if c is a cluster point of A, prove that f can have only one limit at c.					
10.	Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Prove that f has an absolute					
	maximum and an absolute minimum on I .					
11.	State and prove the Caratheodory's theorem.					
12.	Defend the following statements:					
	i) The union of an arbitrary collection of open subsets in \mathbb{R} is open in \mathbb{R} .					
	ii) The union of an arbitrary collection of closed sets in \mathbb{R} need not be closed in \mathbb{R} .					
	SECTION D – K5 (CO4)					
	Answer any ONE of the following	$(1 \times 20 = 20)$				
13.	Let $I \subseteq \mathbb{R}$, let f and g be functions on I to \mathbb{R} . If f and g are differentiable at c, the	n prove that $f +$				
	g, fg, bf and $\frac{f}{g}$ (if $g(x) \neq 0$, $\forall x \in I$) are also differentiable at c . Further, prove that					
	i. $(f + g)'(c) = f'(c) + g'(c)$					
	ii. $(f g)'(c) = f'(c)g(c) + g'(c)f(c)$					
	iii. $ (bf)'(c) = bf'(c) $					
	iv. $\left(\frac{f}{g}\right)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}$ if $g(c) \neq 0$					
14.	(a) State and prove Location of roots theorem.	(12 marks)				
	(b) State and prove Squeeze theorem on Riemann integration.	(8 marks)				
	SECTION E – K6 (CO5)					
	Answer any ONE of the following	$(1 \times 20 = 20)$				
15.	(a) Justify in detail using the concept of limit of a function that $\lim_{x \to c} x^2 = c^2$.	(10 marks)				
	(b) If $f: [a, b] \to \mathbb{R}$ is continuous on $[a, b]$, establish that $f \in \mathcal{R}[a, b]$.	(10 marks)				
16.	(a) State and prove Taylor's theorem.	(12 marks)				
	(b) Prove that a subset of \mathbb{R} is compact if and only if it is bounded and closed.	(8 marks)				